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Although the EPIC model has been widely used in agricultural and environmental studies, applications of
this model may be limited in the regions where daily weather data are not available. In this paper,
a stand-alone MODAWEC model was developed to generate daily precipitation and maximum and
minimum temperature from monthly precipitation, maximum and minimum temperature, and wet days.
A case study shows that the crop yields and evapotranspiration (ET) simulated with the generated daily
weather data compare very well with those simulated with the measured daily weather data with low
normalized mean square errors (0.008–0.017 for crop yields and 0.003–0.004 for ET). The MODAWEC
model can extend the application of the EPIC model to the regions where daily data are not available or
not complete. In addition, the generated daily weather data can possibly be used by other environmental
models. Associated with MODAWEC, the EPIC model can play a greater role in assessing the impacts of
global climate change on future food production and water use.

� 2008 Elsevier Ltd. All rights reserved.
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Program language: FORTRAN
Developer: Swiss Federal Institute of Aquatic Science and Tech-
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1. Introduction

Over the past two decades, the Environmental Policy Integrated
Climate (EPIC, originally known as Erosion Productivity Impact
Calculator) model has played an important role in the agricultural
and environmental studies in the U.S. and in the other regions of the
world. The EPIC model is a field-scale model that is designed to
simulate drainage areas characterized by homogeneous weather, soil,
landscape, crop rotation, and management system parameters. It was
first developed in 1981 to support assessments of soil erosion impacts
on soil productivity in the U.S. (Williams et al.,1984). Since then, it has
þ41 448235375.
uo.liu@eawag.ch (J. Liu).

All rights reserved.
continuously been developed by integrating and improving
a number of additional functions including water quality, atmo-
spheric CO2 change, and carbon cycling routines. The model has been
applied in a wide range of studies in agriculture, meteorology, and
environment, e.g. crop growth and yield (Williams et al., 1989;
Easterling et al., 1996), impacts of climate change (Easterling et al.,
1992; Brown and Rosenberg,1997), nutrient cycling and nutrient loss
(Jackson et al., 1994; Pierson et al., 2001), wind and water erosion
(Potter et al., 1998; Bhuyan et al., 2002), pesticide losses (Sabbagh
et al., 1991; Williams et al., 1992), impacts of irrigation on crop yields
(Cabelguenne et al.,1995; Rinaldi, 2001), soil temperature (Potter and
Williams, 1994; Roloff et al., 1998), soil carbon sequestration (Lee
et al., 1996; Potter et al., 2004), and economic–environmental anal-
ysis (Bernardo, 1993a,b; Kurkalova et al., 2004). Partly due to its good
performance, the EPIC model has been applied in several regional,
national and even global assessments. For example, a ‘‘spatial EPIC’’
system (Priya and Shibasaki, 2001) was developed to assess the
national crop productivity in India. GIS-based EPIC models, which
integrate EPIC with a geographic information system (GIS), were also
used to study crop yield with high spatial resolutions for China (Liu
et al., 2007a), for Africa (Liu et al., in press) and for the entire world
(Tan and Shibasaki, 2003; Liu et al., 2007b, 2008; Liu, 2009).

Daily weather data are needed for the simulation of most
processes in the EPIC model, but such data are often not available or
not complete in many parts of the world. For example, so far, one of
the most comprehensive daily weather data products, the Global
Surface Summary of the Day produced by the National Climatic
Data Center (NCDC), covers historical data of over 10,000 stations
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from 1929 to the present, with data from 1973 to the present being
the most complete (http://www.ncdc.noaa.gov). For this dataset,
there is an uneven distribution of meteorological stations among
countries with sparse stations in many underdeveloped countries.
Furthermore, the daily data are often not complete with many
missing data in individual stations. In addition, NCDC does not
provide projected future weather data for these stations.

When not available or not complete, the daily weather data can
be generated with EPIC’s built-in ‘‘weather generator’’ (WXGEN).
WXGEN incorporates a first-order Markov chain technique for
a wet or dry day decision. When a wet day is generated, a skewed
normal distribution is used to generate the amount of daily
precipitation. WXGEN first independently generates precipitation
for a day. Maximum temperature, minimum temperature, solar
radiation and relative humidity are generated on the presence or
absence of rain for the day. Daily wind speed is generated
independently. Detailed description of WXGEN can be found in
Sharpley and Williams (1990). The inputs to WXGEN are several
monthly statistics taken from long-term daily weather records.
Monthly statistics such as monthly skew coefficient and monthly
probability of wet day after dry day or wet day are difficult to obtain
without daily weather data. When the necessary monthly statistics
are available, WXGEN is very useful in simulating daily weather
sequences that have statistical properties similar to those of
measured weather in the same region. It can provide any number of
equally likely weather sequences for use in evaluating management
strategies under varying climatic conditions. Also, it can repeat the
same weather sequence of any length (hundreds of years) as many
times as needed in evaluating various management strategies
under the same climatic conditions. However, since WXGEN is
a stochastic model, the generated weather sequences do not
resemble measured weather records year to year, although their
long-term statistical properties are similar. Daily time step models
like EPIC require daily weather data, but these data cannot be
generated accurately for individual years by WXGEN.

Monthly weather data are easier to obtain than daily weather
data. For example, monthly precipitation, maximum and minimum
temperature, and wet days are available on a global scale with
a spatial resolution of 30 arc-min (about 50� 50 km in each grid
cell near the equator) for 1901–2000 through the Climatic Research
Unit (CRU) at the University of East Anglia (Mitchell et al., 2004).
The Tyndall Centre for Climate Change Research (TYN) from the
same university provides monthly variations of the above climate
data for 16 different climate scenarios for 2001–2100 (Mitchell
et al., 2004). These monthly data are valuable for conducting past,
current and future global environmental assessments. However,
they cannot be used directly by EPIC because the model operates on
a daily time step. Since only monthly weather is available in many
locations, there is a need for a method for converting monthly data
to daily data.

The purpose of this study is to develop a stand-alone weather
generator MODAWEC (MOnthly to DAily WEather Converter) for the
EPIC model (EPIC0509). As our main interests are crop yield and
crop water use, one important objective of model development is to
generate reliable daily weather data for the EPIC model to simulate
crop yield and crop evapotranspiration (ET). A case study is
provided to test the reliability.

2. The MODAWEC model

The MODAWEC model converts monthly precipitation (in mm)
and maximum and minimum temperature (in �C) to daily values
while preserving the monthly totals and averages. The main inputs
of the MODAWEC model include monthly precipitation, monthly
wet days, and monthly maximum and minimum temperature in
each year. The outputs are daily precipitation, daily maximum
temperature, and daily minimum temperature. The flowchart of the
MODAWEC model is depicted in Fig. 1. According to the classifica-
tion by Bannayan and Hoogenboom (2008), the MODAWEC model
is a parametric weather generator because it uses precipitation as
the driving variable. Precipitation occurrence and amount are
generated independently and other variables (e.g. temperature) are
then generated based on the stochastically generated precipitation.
We do not apply a nonparametric approach such as the k-nearest
neighbor (k-NN) approach (Bannayan and Hoogenboom, 2008). The
k-NN approach needs not only monthly weather data but also
observed historical daily data in a number of years as input. As
discussed previously, the observed historical daily data are often
not available.

2.1. Daily precipitation generation

To generate daily precipitation, a first-order Markov chain by
Nicks (1974) is first used to define the day as wet or dry. Markov
chain models are based on transitional probability matrices of
various time steps. Most often, a first-order Markov chain implies
preservation of statistical parameters and especially the first-order
autocorrelation coefficient in the synthetic sequences (Sahin and
Sen, 2001). Here, precipitation occurrence is assumed to follow
a two-state (dry or wet), first-order Markov chain with two
transition probabilities: the probability that a wet day follows
a dry day and the probability that a wet day comes after a previous
wet days. The probability of rain on a given day is conditioned on
the wet or dry status of the previous day. The transition from one
state (dry or wet) to the other (wet or dry) is governed by the two
transition probabilities. In case of a wet day, a modified expo-
nential distribution is used to give first approximations of the
amount of daily precipitation. Final daily precipitation is obtained
by correcting the initial estimates based on the given monthly
precipitation. The process of daily precipitation generation is
described below. All the equations in this section are obtained
from Williams (1995).

On any given day, the input to the daily precipitation generator
must include information as to whether the previous day is dry or
wet. A random number (0–1) is generated and compared with the
appropriate wet–dry probability. If the random number is less than
or equal to the wet–dry probability, precipitation occurs on that
day. Random numbers greater than the wet–dry probability give no
precipitation. Since the wet–dry state of the first day is established
(by assuming the first day is dry), the process can be repeated for
the next day and so on throughout the simulation period. Since
wet–dry probabilities are not available for monthly precipitation
data, they can be estimated given the number of wet days. The
probability of a wet day is calculated directly from the number of
wet days:

PðwÞ ¼
nw

n
(1)

where P(w) is the probability of a wet day, nw is the number of wet
days, and n is the number of days in a month. The probability of
a wet day after a dry day can be estimated as a fraction of P(w)

PðwjdÞ ¼ b1 � PðwÞ (2)

where P(wjd) is the probability of a wet day following a dry day and
b1 is a fraction usually in the range of 0.6–0.9. The probability of
a wet day following a wet day can be calculated directly by using
the equation

PðwjwÞ ¼ 1:0� b1 þ PðwjdÞ (3)

http://www.ncdc.noaa.gov
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Fig. 1. Flowchart of the MODAWEC model.
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where P(wjw) is the probability of a wet day after a wet day. When
b1¼1.0, wet days do not affect probability of rainfall:
P(wjd)¼ P(wjw)¼ P(w). Conversely, low b1 values give strong wet day
effects: b1¼0.0, P(wjw)¼ 1.0, P(wjd)¼ 0. Thus, b1 controls the interval
between rainfall events but has no effect on the number of wet
days. For many locations, b1¼0.75 gives satisfactory estimates of
P(wjd). In this paper, b1¼0.75 is used as default. Although Eqs. (2)
and (3) may give slightly different probabilities from those esti-
mated from rainfall records, they do guarantee correct simulation
of the number of rainfall events.

In case of a wet day, daily precipitation is generated from
a modified exponential equation:

Ri ¼ Rw � ð � lnðRNÞÞ1:3 (4)

where Ri is the daily precipitation on day i, Rw is the mean
precipitation amount for wet days in a month, and RN is a uniform
random number. The value of Rw is calculated by dividing the mean
monthly precipitation (Rm) by the mean number of wet days (nw) in
each month. The Ri calculated in Eq. (4) are summed and corrected
using the equation

R�i ¼ Ri �
Rm

S
(5)

where R*
i is the corrected daily precipitation on day i, Rm is the

measured monthly precipitation, and S is the sum of the generated
precipitation amounts for a month.

2.2. Daily maximum and minimum temperature generation

In MODAWEC, the model developed by Richardson (1981) was
selected to give first approximations of daily temperature because
it simulates temperature that is correlated with rainfall. The
residuals of daily maximum and minimum air temperature are
generated from a multivariate normal distribution. The
multivariate generation model used implies that the residuals of
maximum and minimum temperature are normally distributed and
that the serial correlation of each variable may be described by
a first-order linear autoregressive model. Final values of tempera-
ture are obtained by correcting the initial estimates using the
average daily maximum and minimum temperature in a month.

The temperature model requires monthly means of maximum
and minimum temperatures and their standard deviations as
inputs. If the standard deviations are not available, the long-term
observed extreme monthly minimums and maximums may be
substituted. The model estimates standard deviation as 0.33 of the
difference between the extreme and the mean for each month. If
extreme temperatures are not available, MODAWEC estimates the
standard deviations from the equations.

sTmax ¼ maxð0:5;5:8� 0:09� TmaxÞ (6)

sTmin ¼ maxð0:5;5:2� 0:13� TminÞ (7)

where for a month, sTmax is the standard deviation of daily
maximum temperature, Tmax is the average daily maximum
temperature in the month, sTmin is the standard deviation of daily
minimum temperature, and Tmin is the average daily minimum
temperature in the month.

Maximum temperature tends to be lower on rainy days. Thus, it
is necessary to adjust the mean maximum temperature downward
for simulating rainy day conditions. For the mean monthly
maximum temperature (Tmax) this is accomplished by assuming
that wet day values are less than dry day values by some fraction of
the difference between Tmax and Tmin:

TWmax ¼ TDmax � b2ðTmax � TminÞ (8)

where TWmax is the daily mean maximum temperature for wet
days, TDmax is the daily mean maximum temperature for dry days,
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b2 is a scaling factor ranging from 0.0 to 1.0, Choosing b2¼1.0
provides highest deviations on wet days and b2¼ 0.0 ignores the
wet day effect. Observed data indicate that b2 usually lies between
0.5 and 1.0. The default value of 0.5 is used in the MODAWEC model.

Since Eq. (8) gives lower mean maximum temperature values
for wet days, a companion equation is necessary to slightly increase
mean maximum temperature for dry days. The development is
taken directly from the continuity equation

Tmax � n ¼ TWmax � nw þ TDmax � nd (9)

where n is the number of days in a month, nw is the number of wet
days, and nd is the number of dry days. The desired equation is
obtained by substituting Eq. (8) into Eq. (9) and solving for TDmax.

TDmax ¼ Tmax þ b2ðTmax � TminÞ
nw

n
(10)

The use of the continuity equation guarantees that the long-
term simulated value for mean maximum temperature agrees with
the input value of Tmax. The first approximation of maximum and
minimum temperature is estimated with the equations

Tmax;i ¼ TXþ sTmax � dTmax (11)

Tmin;i ¼ TNþ sTmin � dTmin (12)

where Tmax;i and Tmin;i are the first approximations of maximum
and minimum temperature on day i, dTmax and dTmin are the
standard normal deviates for maximum and minimum tempera-
ture, and TX¼ TWmax on wet days while TX¼ TDmax on dry days.
Daily minimum temperature is assumed not to be affected by the
wet/dry conditions. TN is equal to the mean monthly minimum
temperature, or TN ¼ Tmin.

The simulated Tmax;i and Tmin;i are corrected using the equations

T*
max;i ¼ Tmax;i þ Tmax � SM1=n (13)

T*
min;i ¼ Tmax;i � n� Tmax;i � Tmin;i �

Tmax � Tmin

SM1 � SM2
(14)

where T*
max;i and T*

min;i are the corrected maximum and minimum
temperatures on day i, and SM1 and SM2 are the sums of Tmax;i and
Tmin;i for a month.

2.3. Sensitivity analysis

While there are many methods for sensitivity analysis, variance-
based sensitivity analysis is the most commonly used one.
Variance-based sensitivity analysis is based on generated samples
of input parameters from a defined probability distribution. With
the generated samples, a model is evaluated to create output. The
sensitivity of the output variance is analyzed in relation to the
variation of the input parameters. The first-order sensitivity index
(Si) represents the sensitivity of output Y to a singular parameter Xi,
and it is estimated as a ratio between the conditional variance of
the expectation value EðYjXiÞ and the unconditional variance of
output Y (Schwieger, 2004) given by:

Si ¼
V
�
E
�
Y
��Xi ¼ x*

i

��

VðYÞ (15)

where V(Y) is the total variance of output Y, Xi is an input parameter,
EðYjXi ¼ x*

i Þ is the expectation of Y conditional on Xi having fixed
value xi, VðEðYjXi ¼ x*

i ÞÞ is the conditional variance of estimated
output Y where parameter Xi is fully fixed and others are varying. Si
represents the average output variance reduction that can be ach-
ieved when Xi becomes fully known and is fixed.

When dealing with non-addictive models, the estimation of
higher order sensitivity indices is essential, but it is very compu-
tationally demanding. An efficient alternative is to compute the
total sensitivity index (STi). STi represents the overall impact of
parameter Xi on output Y (Schwieger, 2004) given by:

STi ¼
E
�
V
�
Y
��Xwi ¼ x*

wi

��

VðYÞ (16)

where Xwi is all the parameters apart from Xi. EðVðY jXwi ¼ x*
wiÞÞ is

the conditional variance of Y when all parameters are fixed except
Xi which is varying. STi is the sum of all effect (first and higher order)
involving the parameter Xi, and it is regarded as the expected
fraction of the output variance that would remain unexplained if
parameter Xi were unknown but all other parameters were known.

The extended Fourier amplitude sensitivity test (FAST) method is
selected to calculate Si and STi. For the FAST method, Fourier
decomposition is applied to obtain the fractional contribution of the
individual parameters to the variance of the model output. The basis
of the FAST approach is a transformation that converts a multidi-
mensional integral over all the uncertain model input parameters to
a one-dimensional integral, via a search curve that scans the whole
parameter space (Saltelli and Bolado, 1998). The scanning is done so
that each axis of the parameter space is explored with a different
frequency. The classical FAST method initially developed by Cukier
et al. (1970) can be used to estimate the effect of only one input
parameter or the effect of all inputs varying together, but it is not
efficient in addressing higher order interaction terms. The extended
FAST method developed by Saltelli et al. (1999) can address higher
order interactions between the input parameters.

We select the extended FAST method for sensitivity analysis
mainly due to the many advantages of FAST over other sensitivity
analysis methods. FAST represents one of the most elegant methods
for sensitivity analysis. As a method for global sensitivity analysis,
FAST is superior to the local sensitivity analysis methods mainly
due to two reasons: first, it can apportion the output variance to the
variance in the input parameters; and second, it can be used to fix
the non-influential parameters at their midpoint or ‘‘nominal
value’’ (Saltelli and Bolado, 1998). FAST is also superior to many
other commonly used methods for global sensitivity analysis, e.g.
standardized regression coefficients (SRC) (Draper and Smith, 1981)
and standardized rank regression coefficients (SRRC) (Saltelli and
Sobol, 1995). This is in part because that the FAST method is model
independent, and it allows the determination of not only the
individual effects of parameters, but also the cumulative interaction
effect among parameters.
3. A test of the MODAWEC model

3.1. Site description and model parameterization

The weather, soil, and management data used in this test case
were from a long-term experiment conducted at the Arlington
Agricultural Research Station of the University of Wisconsin in the
south central Wisconsin (43� 180 N, 89� 210 W). The station is
located on an extended plain with 1%–2% slope on a Plano silt loam
soil (fine-silty, mixed, mesic, Typic Argiudoll). The long-term
experiment was established in 1958 in order to evaluate the
response of continuous corn (Zea mays L.) to nitrogen treatments.
Four treatments (T3, T5, T7 and T9) were selected in which nitrogen
fertilizer was applied in the absence of liming. The treatments with
lime application were not used here mainly due to the short liming
period (Wang et al., 2005). All the treatments had the same tillage
operations and planting/harvesting dates except for the nitrogen



Table 1
Nitrogen fertilizer application rates of four treatments.

Period Nitrogen fertilizer application rate (kg N ha�1)

T3 T5 T7 T9

1958–1962 56 112 56 112
1963–1972 92 184 92 184
1973–1983 140 280 140 280
1984–1991 0 0 84 168
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fertilizer application rates (Table 1). Corn was planted every year
usually between the 1st and 4th weeks of May and harvested in the
4th week of October. Nitrogen fertilizer was generally applied 10
days prior to crop planting. A detailed description of the study site
and treatment design can be found in Wang et al. (2005).

Long-term solar radiation, precipitation, maximum and
minimum temperature, relative humidity and wind velocity have
been measured on a daily basis for the period 1958–1991 (Wang
et al., 2005). The soil profile was divided into five layers. Soil
parameters of soil depth, bulk density, wilting point, field capacity,
sand and silt content, soil pH and organic carbon content in each
layer were based on measured values (see details in Wang et al.,
2005). Parameters were set based on an automatic parameter
optimization in Wang et al. (2005).

3.2. Simulation of crop yield and evapotranspiration (ET)

Daily potential increase in biomass is simulated using the
Monteith’s approach (Monteith, 1977). The daily biomass is
adjusted for stress from water, temperature, nutrient and aeration
(Williams et al., 1989). Crop yield is estimated by multiplying the
above-ground biomass at maturity with a water stress adjusted
harvest index. EPIC provides several methods to calculate potential
ET (PET). The Penman–Monteith method (Monteith, 1965) is
commonly used when all the weather variables of precipitation,
maximum and minimum temperature, wind speed, relative
humidity and solar radiation are available. When wind speed,
relative humidity, and solar radiation data are not available, the
Hargreaves method (Hargreaves and Samani, 1985) is an option,
which estimates PET as a function of extraterrestrial radiation and
temperature. The EPIC model computes transpiration from plants
and evaporation from soil separately by an approach similar to that
of Ritchie (1972). The potential evaporation and potential transpi-
ration are first computed. Actual ET and transpiration may be
limited by soil water deficits. Simulated crop yield is affected when
different methods to estimate PET are used since the water stress
constraint for crop growth is the ratio of actual transpiration to
potential transpiration.

To test the MODAWEC model, crop yield and ET were simulated
with four different sets of weather data (Run 1, 2, 3, and 4 in Table 2)
for each of the four treatments in Table 1. In Run 1 and Run 2, daily
precipitation, maximum temperature, minimum temperature,
Table 2
Setup of four different runs in this study.

Run Daily precipitation
and maximum
and minimum
temperature

Daily solar radiation,
relative humidity,
and wind velocity

Method for PET Results

Run 1 Measured data Measured
data

Penman–Monteith YP0, ETP0

Run 2 Generated using
MODAWEC

Measured
data

Penman–Monteith YP1, ETP1

Run 3 Measured data Not used Hargreaves YH0, ETH0

Run 4 Generated using
MODAWEC

Not used Hargreaves YH1, ETH1
solar radiation, relative humidity and wind velocity from 1958 to
1991 were used. In Run 1, measured daily data on all these weather
variables were used. In Run 2, daily precipitation, maximum
temperature, and minimum temperature generated by MODAWEC
were used with the measured daily data on other three variables. In
Run 3 and Run 4, only daily data on precipitation, maximum
temperature, and minimum temperature were used. For the three
weather variables, measured daily data were used in Run 3, while
daily data generated by MODAWEC were used in Run 4. Crop yield
and ET calculated in Run 2 were compared with those calculated in
Run 1. Crop yield and ET calculated in Run 4 were compared with
those calculated in Run 3. The comparison will be shown in the next
sections.

3.3. Statistical tests for model performance

Several statistical indexes were used to test whether the crop
yields and ET simulated with generated weather variables by
MODAWEC are comparable with those simulated with measured
weather variables. The indexes include coefficient of determination
(r2), slope and intercept of the regression function, normalized
mean square error (NMSE) (Hanna, 1988), index of agreement (d)
(Willmott, 1982). The normalized mean square error (NMSE) ranges
from 0 to 1, and a value of 0 implies perfect agreement between two
datasets. The index of agreement (d) ranges from 0 to 1, and a value
of 1 implies perfect agreement.

3.3.1. Crop yield
YP1 compares well with YP0 for all the four treatments. All the

full dots indicating the YP1 w YP0 relation are scattered closely at the
1:1 lines (Fig. 2). For all the treatments, YP1 and YP0 agree well with
each other with r2 values between 0.83 and 0.87 (Table 3). All the
slopes of the regression between YP1 and YP0 are not significantly
different from 1.0 (P< 0.0001 for all treatments, F-test). The slopes
are all close to 1.0. NMSE are between 0.008 and 0.013. The d values
are all no less than 0.95. All the statistical indexes indicate excellent
agreement between YP1 and YP0.

Similarly, YH1 compares well with YH0 for all the four treatments.
All the full dots indicating the YH1 w YH0 relation are scattered
closely at the 1:1 lines (Fig. 3). For all the treatments, YH1 and YH0

agree well with each other with r2 values between 0.78 and 0.85
(Table 3). All the slopes of the regression between YH1 and YH0 are not
significantly different from 1.0 (P< 0.0001 for all treatments, F-test).
The slopes are between 0.94 and 0.99. NMSE are between 0.011 and
0.017. The d values are all no less than 0.94. All the statistical indexes
indicate excellent agreement between YH1 and YH0.

The above comparisons suggest that crop yields simulated with
the daily precipitation and temperature data generated by MOD-
AWEC compare very well with those simulated with the measured
daily data on precipitation and temperature. To further compare
between MODAWEC and WXGEN, we use the generated weather
data by WXGEN as inputs to EPIC, and simulate crop yield with the
Penman–Monteith and Hargreaves methods, respectively, for each
of the four treatments. The comparison between these results and
those from YP0 and YH0 shows poor agreement with r2 ranged from
0.05 to 0.43 for Penman–Monteith method and r2 ranged from 0.00
to 0.14 for Hargreaves method. The poor agreement is not
surprising. WXGEN can generate any number of weather sequences
that are equally likely to occur and that have the same statistical
properties as the measured weather. However, none of these
sequences will match the measured weather year by year. For
example, WXGEN may generate dry conditions for a year that is
very wet. Hence, WXGEN is a useful for long-term weather gener-
ation, but not for individual years. Instead, MODAWEC produces
weather similar to the daily measured weather – similar enough
that the simulated crop yields by EPIC are about the same as when



Fig. 2. The relation between YP1 and YP0. The dashed line is the 1:1 line through the origin. Each point is for one specific year between 1958 and 1991.

J. Liu et al. / Environmental Modelling & Software 24 (2009) 655–664660
measured daily weather is used. For the simulation of ET, similar
conclusion can be drawn, and we will not repeat the comparison in
later section.

Besides the above statistical tests, we also calculate the relative
error, i.e. (YP1� YP0)/YP0 and (YH1� YH0)/YH0. The results show that
about 85% of the relative errors for both the methods (Hargreaves
and Penman–Monteith) in the four treatments are within �20%,
while over 95% of the relative errors are within �30%. The high
relative errors generally occur in the years when extreme weather
occurs. One typical example is in the year of 1988. There are three
subsequent days with maximum temperature over 38 �C in August.
The high temperature results in damages to crop growth (e.g. crop
yield is only 2.38 Mg/ha in T3). However, the extremely high
temperatures are not completely captured by the MODAWEC
model. The generated daily weather data only indicate one day
with temperature higher than 38 �C in this month. As a result, the
simulated yield is as high as 3.87 Mg/ha. It seems that, as most
other traditional weather generators, the MODAWEC model has
difficulties in accurately estimating extremes (temperature and
precipitation included). Further research is needed to overcome
this shortcoming, particularly when the model is used to support
the simulation of extreme related processes such as flood or
drought. According to Kilsby et al. (2007), the Neyman–Scott
Rectangular Pulses (NSRP) model may be helpful to address this
issue since it has been demonstrated to realistically reproduce
extreme values for a number of sites in Italy and UK.

3.3.2. Evapotranspiration (ET)
ETP1 compares well with ETP0 for all the four treatments. All the

full dots indicating the ETP1 w ETP0 relation are scattered closely at
Table 3
Statistical indexes indicating the extent of the agreement for YP1 w YP0, YH1 w YH0, ETP1 w

Statistical index YP1 w YP0 YH1 w YH0

T3 T5 T7 T9 T3 T5 T7 T

r2 0.85 0.86 0.83 0.87 0.81 0.85 0.78 0
Slope 0.94 0.93 0.94 0.93 0.97 0.98 0.94 0
Intercept 0.10 0.22 0.18 0.20 0.01 0.05 0.19 0
NMSE 0.013 0.011 0.010 0.008 0.017 0.012 0.014 0
d 0.96 0.96 0.95 0.97 0.95 0.96 0.94 0
the 1:1 lines (Fig. 4). For all the treatments, ETP1 and ETP0 agree well
with each other with r2 values between 0.83 and 0.84 (Table 3). All
the slopes of the regression between ETP1 and ETP0 are not signif-
icantly different from 1.0 (P< 0.0001 for all treatments, F-test). The
slopes range from 0.88 to 0.93. NMSE are all equal to 0.004. The
d values are all equal to 0.96, close to 1 which indicates perfect
agreement. All these statistical indexes show an excellent agree-
ment between ETP1 and ETP0.

Similarly, ETH1 compares well with ETH0 for all the four
treatments. All the full dots indicating the ETH1 w ETH0 relation
are scattered closely at the 1:1 lines (Fig. 5). For all the treat-
ments, ETP1 and ETP0 agree well with each other with r2 values
between 0.86 and 0.88 (Table 3). All the slopes of the regression
between ETP1 and ETP0 are not significantly different from 1.0
(P< 0.0001 for all treatments, F-test). The slopes range from 0.90
to 0.91. NMSE are between 0.003 and 0.004. The d values are all
equal to 0.97, close to 1 which indicates perfect agreement. All
these statistical indexes show an excellent agreement between
ETH1 and ETH0.

Relative errors of ET are much smaller than those of crop yield.
The results show that all the relative errors for both the methods
(Hargreaves or Penman–Monteith) in the four treatments are
within �20%, while 99% of the relative errors are within �15%. The
smaller relative errors of ET are understandable. Crop yield can be
highly affected by extreme weather. For example, high temperature
can lead to reduction in yield. As a result, crop transpiration is
lower. However, soil evaporation is generally a function of
temperature, and it will increase with high temperature. Conse-
quently, the sum of soil evaporation and crop transpiration, or ET, is
less affected by extreme weather conditions.
ETP0, and ETH1 w ETH0.

ETP1 w ETP0 ETH1 w ETH0

9 T3 T5 T7 T9 T3 T5 T7 T9

.84 0.83 0.84 0.84 0.84 0.86 0.88 0.88 0.88

.99 0.88 0.92 0.93 0.93 0.90 0.90 0.91 0.91

.00 42 27 26 25 32 32 30 30

.011 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003

.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97



Fig. 3. The relation between YH1 and YH0. The dashed line is the 1:1 line through the origin. Each point is for one specific year between 1958 and 1991.
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The above comparisons suggest that ET simulated with the daily
precipitation and temperature data generated by MODAWEC
compares very well with that simulated with the measured daily
data on precipitation and temperature, no matter which method
(Penman–Monteith method or Hargreaves method) is used.

3.4. Sensitivity analysis

In this paper, sensitivity analysis is conducted with four steps:

1) Parameter sampling: the first step is to generate random
parameter combinations of b1 and b2, the two parameters used in
the MODAWEC model. A uniform distribution is assumed for both
the parameters based on our experience. The ranges of parame-
ters are 0.6–0.9 for b1 and 0.5–1.0 for b2. The sample size is 1000.
Fig. 4. The relation between ETP1 and ETP0. The dashed line is the 1:1 line thro
2) Execution of the MODAWEC model: the MODAWEC model is
executed to calculate daily weather variables (i.e. maximum
temperature, minimum temperature, and precipitation) for
each combination of b1 and b2. With 1000 parameter combi-
nations, we estimate 1000 sets of daily weather variables.

3) Execution of the EPIC model: crop yield and ET are calculated
for each set of daily weather variables;

4) Calculation of sensitivity indices: the sensitivity indices are
calculated based on input parameters (i.e. b1 and b2) and
outputs (i.e. crop yield and ET) with the extended FAST method.

The parameter sampling and calculation of sensitivity indices
are carried out with the ‘‘sensitivity’’ package for the R software.
The sensitivity of simulated crop yield to the input parameters is
demonstrated in Fig. 6 with the FAST first order and total order
ugh the origin. Each point is for one specific year between 1958 and 1991.



Fig. 5. The relation between ETH1 and ETH0. The dashed line is the 1:1 line through the origin. Each point is for one specific year between 1959 and 1991.
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Fig. 6. Sensitivity indices for annual crop yield of corn for T7.
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sensitivity indices. These sensitivity indices are calculated for T7 for
Run 2 in Table 2 for illustration.

In general, the first order sensitivity index (Si) for b1 is much
higher than that for b2 (Fig. 6). Si is 0.235� 0.185 for b1 and
0.043� 0.039 for b2 between 1958 and 1991. Si for a particular
parameter indicates the amount of variance that would be removed
from the total output variance if the true value of that parameter
were known. Hence, the comparison indicates that crop yield is
more sensitive to parameter b1 than b2. This is so because b1 affects
storm interval and rainfall amount and b2 affects temperature.
Storm interval and rainfall amount largely determine runoff and
infiltration (soil water available for plant use). Generally crop yield
is much more sensitive to soil water than air temperature.

The sum of Si for b1 and b2 is 0.279� 0.184 during 1958–1991.
This means that, without considering the interaction between b1

and b2, the two parameters together can explain only about 30% of
the output variance. Another obvious trend is that the FAST total
order sensitivity index (STi) is much higher than Si (Fig. 6). This
implies high interaction between b1 and b2. When the parameter
interaction is taken into account, on average, b1 can explain 88.1% of
the output variance, while b2 can explain 55.6% during 1958–1991.
The high interaction is largely because that temperature is influ-
enced by precipitation. Daily maximum temperature is calculated
based on wet/dry conditions, as shown in Eqs. (8)–(11).

Sensitivity analysis is also conducted for crop yield and ET for all
the treatments specified in Table 1. The results show the similar
trends as described in the above illustration. In general, outputs are
more sensitive to parameter b1 than b2. STi is much higher than Si,
indicating high interaction between b1 and b2. Due to the similar
conclusions drawn from each treatment, we only present sensi-
tivity analysis for crop yield for T7 here in this paper.

4. Conclusions

A MODAWEC model has been developed to generate daily
precipitation and maximum and minimum temperature with
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monthly weather data. The results show that the simulated crop
yield or ET does not differ significantly when the measured daily
weather data or the generated daily weather data by the MOD-
AWEC model are used. The MODAWEC model enables the appli-
cation of the EPIC model in regions where only monthly data are
available. Particularly, for global level studies, daily weather data
are often lacking in many regions, but complete historical monthly
weather data on precipitation, maximum and minimum tempera-
ture and wetting days are available from the Climatic Research Unit
(CRU) in the University of East Anglia for all grid cells with high
spatial resolution. Furthermore, the MODAWEC model can
contribute to assessing the impacts of global climate change on
food production and water use. Future monthly weather data can
be obtained from public available sources such as the Tyndall
Centre for Climate Change Research in the University of East Anglia.
A combined application of these monthly data with the EPIC and
MODAWEC models can help simulate the impact of climate change
on food production. Although the MODAWEC model is developed
for the EPIC model, the generated daily weather data can also be
used by other environmental models. The MODAWEC model and its
source code are available free of charge by contacting the corre-
sponding author of this paper.

The MODAWEC model has only been tested with four treat-
ments at the Arlington Agricultural Research Station in the USA.
Clearly further tests of the model in other locations are needed
prior to wider applications. It also needs to be pointed out that the
generated daily weather data may have poor correlation with the
actual daily values, particularly for precipitation. The simulated wet
days according to the Markov rainfall model may not be the actual
wet days. This can lead to large differences between the generated
and actual daily precipitation. One would not expect agreement on
a daily basis since the rainfall occurrence and amounts are
stochastic. However, agreement is guaranteed between the mean
monthly simulated and measured values and the number of storms
in each month. One would also expect close agreement between
the standard deviations of simulated and measured daily rainfall
amounts and maximum and minimum air temperatures. Although
the simulated weather sequence is different from the measured
sequence it should be just as valuable for most simulation projec-
tions. After all, the measured weather sequence will never be
repeated in the future.

The MODAWEC model is developed to provide daily weather
data in order to support the simulation of biogeochemical
processes, e.g. crop yield and ET in this paper. We have demon-
strated that the quality of the generated daily weather data is high
enough for the simulation of crop yield and ET at the Arlington
Agricultural Research Station. Nevertheless, there is a need to test
whether the simulation results with the generated daily weather
data are reliable for the simulation of other processes in the EPIC
model, such as nutrient cycle, soil carbon sequestration, and wind
and water erosion, etc.
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