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Abstract

The hydroelasticity of a very large floating plate with large deflections in multidirectional

irregular waves is discussed. After a brief introduction on wave loads on a flexible structure,

the paper derives the generalised fluid force acting on a floating structure in multidirectional

irregular waves. The nonlinear sectional forces induced by the membrane forces in the plate

are deduced. The hydroelastic response equations of a floating plate with large deflections in

multidirectional irregular waves are established, and a solution method in the frequency

domain is discussed including extreme value statistics. A very large floating structure is chosen

as an example. The numerical results show that the influence of the membrane forces on the

vertical displacements and the bending moments is noticeable but not that large.
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1. Introduction

Hydroelastic theories have been applied to the design and research works related to
marine structures for several decades. Very large floating structures (VLFSs) require a
hydroelastic analysis due to their large size [1–4]. Whereas both linear and nonlinear
wave loads have been considered, nonlinear structural characteristics have generally
not been included. However, as the maximum vertical displacement of a pontoon type
very large floating structure may be larger than 1m, the authors of this paper studied
the hydroelasticity of a plate in multidirectional regular waves [5], where the membrane
forces were taken into account. The numerical results showed that the membrane
contribution both in terms of axial stresses and its effect on the bending stresses can be
important. The paper was restricted to a bi-chromatic regular wave system considering
only the sum-frequency contributions. In the present paper, the hydroelastic response
equations of a floating plate with large deflections in multidirectional irregular waves
are established and a solution method in the frequency domain is discussed. The
nonlinear principal coordinates and their resonant characteristics are presented and
extreme value statistics taking into account the kurtosis of the response are included.
2. Wave potential theory around a flexible floating structure

2.1. Decomposition of the velocity potential and the pressure

The fluid around a moored flexible floating body is assumed to be ideal (i.e.,
uniform, continuous, inviscid, incompressible and irrotational). Hence, the fluid
behaviour can be modeled by a velocity potential. Two coordinate systems are
introduced, namely a global equilibrium system Oxyz, and a body-fixed coordinate
system O0x0y0z0: The origin of the Oxyz-system is at the point of intersection of the
still water surface and the vertical line which goes through the gravity centre of the
structure, and the Oz-axis is upward. The O0x0y0z0-system is fixed in the floating body.
The unsteady velocity potential fðx; y; z; tÞ around a zero-forward speed floating

structure in the equilibrium frame may be decomposed into the standard form (e.g., [6])

fðx; y; z; tÞ ¼ fI þ fD þ
Xm

r¼1

fr, (1)

where fI ðx; y; z; tÞ;fDðx; y; z; tÞ and frðx; y; z; tÞ denote the incident wave potential, the
diffraction wave potential, and the radiation wave potential arising from the responses
of the flexible body. In the frequency domain, the first-order unsteady velocity potential
and the principal coordinates prðtÞ may be further expressed as

fðx; y; z; tÞ ¼ Re jI ðoÞ þ jDðoÞ þ
Xm

r¼1

jrðoÞprðoÞ

" #
eiot

( )
, (2)

prðtÞ ¼ RefprðoÞe
iotg, (3)
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where o is the wave circular frequency; jI ðx; y; z;oÞ and jDðx; y; z;oÞ are the
components of the incident wave velocity potential and the diffraction wave potential,
respectively; jrðx; y; z;oÞ ðr ¼ 1; . . . ;mÞ are the components of the radiation wave
potential arising from the vibration in the rth principal dry mode of the flexible body,
with unit amplitude and frequency o: The potentials jDðx; y; z;oÞ and jrðx; y; z;oÞ are
calculated using the Green function method [7]. pr (o) is the complex amplitude of the
principal coordinate. The sign Re{ } in Eqs. (2) and (3) denotes the real part of the
complex in { }.
The governing equations of the fluid are the Laplace equation and the Bernoulli

equation. In the equilibrium coordinate system, they may be expressed as

r2fðx; y; z; tÞ ¼ 0, (4)

pðx; y; z; tÞ

r
þ gz þ

v
*
	 v
*

2
þ

qf
qt

¼ 0. (5)

v
*
ðx; y; z; tÞ; pðx; y; z; tÞ and r in Eq. (5) are respectively the velocity vector, the
pressure and the density of the fluid. Finally, g is the acceleration of gravity.
The fluid pressure acting on the mean wetted surface S during the motion and

distortion of the body is given by the Bernoulli equation in the equilibrium system

pðx; y; z; tÞjS ¼ �r
qf
qt

þ
rf 	 rf

2
þ gz

� �
S

. (6)

The generalised forces acting on the floating structure associated with the model can
be expressed as

ZrðtÞ ¼ �

ZZ
S

n
*
	u
*0

r pdS. (7)

Here, u
*0

r ¼ ðu0r ; v
0
r ;w

0
r Þ

T ; ðr ¼ 1; 2; . . . ;mÞ is a set of orthogonal functions taken here
as the dry modes of the plates and n

*
is the normal vector of the wetted surface of the

structure. In linear theory of hydroelasticity (e.g., [6,8]), n
*
is taken to be independent

of the motion. Thus, substitution of Eqs. (1) and (6) into Eq. (7) yields

ZrðtÞ ¼ Zð0Þ
r þ Zð1Þ

r ðtÞ, (8)

where Zð0Þ
r and Zð1Þ

r ðtÞ are the generalised constant and first-order forces, respectively.
The constant forces are

Zð0Þ
r ¼ r

ZZ
S

n
*
	u
*0

r gz dS, (9)

and provide the generalised steady state buoyancy forces.
The generalised first-order forces may be written as

Zð1Þ
r ðtÞ ¼ Eð1Þ

r ðtÞ þ Dð1Þ
r ðtÞ þ Rð1Þ

r ðtÞ, (10)

with

Eð1Þ
r ðtÞ ¼ r

ZZ
S

n
*
	u
*0

r

q
qt

½fI ðtÞ þ fDðtÞdS, (11)
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Dð1Þ
r ðtÞ ¼

Xm

k¼1

r
ZZ

S

n
*
	u
*0

r

q
qt

fkðtÞdS, (12)

Rð1Þ
r ðtÞ ¼ r

ZZ
S

n
*
	u
*0

r gwdS, (13)

where Eð1Þ
r ðtÞ; H ð1Þ

r ðtÞ and Rð1Þ
r ðtÞ are the generalised first-order wave exciting forces,

radiation forces and restoring forces. w is the vertical displacement of the floating
structure.
2.2. The generalised fluid forces in nonuniform waves

Assume that the nonuniform incident waves consist of multidirectional irregular
waves, then

fI ðtÞ ¼
XI

i¼1

XJi

j¼1

gzji

oji

ekjiz sin½kjiðx cos bi þ y sin biÞ � ojit þ �ji, (14)

where I is the number of direction of the nonuniform incident waves and bi is the ith
incident wave angle. The ith incident irregular waves are composed of Ji regular
waves with the wave elevation zji; the wave circular frequency oji; the wave number
kji and the phase angle �ji:
Eq. (14) can also be expressed shortly as

fI ðtÞ ¼
XN

j¼1

gzj

oj

ekjz sin½kjðx cos bj þ y sin bjÞ � oj t þ �j, (15)

where

N ¼
XI

i¼1

Ji (16)

is the total number of regular waves in the flow field. zj ;oj ; kj ; �j and bj are the wave
elevation, the wave circular frequency, the wave number, the phase angle and the
incident wave angle of the jth regular wave of the nonuniform waves.
By use of Eq. (15), the first-order wave potentials and the principal coordinates

may be expressed as

fI ðx; y; z; tÞ ¼ Re
XN

j¼1

zjjI ðojÞ e
iðoj tþ�j Þ

" #
, (17)

fDðx; y; z; tÞ ¼ Re
XN

j¼1

zjjDðojÞ e
iðoj tþ�j Þ

" #
, (18)
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pkðtÞ ¼ Re
XN

j¼1

zjpkðojÞ e
iðoj tþ�j Þ

" #
, (19)

fkðx; y; z; tÞ ¼ Re
XN

j¼1

zjpkðojÞjkðojÞ e
iðoj tþ�j Þ

" #
. (20)

Substituting Eqs. (17) and (18) into Eq. (11) gives the generalised first-order wave
exciting forces

Eð1Þ
r ðtÞ ¼ Re

XN

j¼1

zjxrðojÞ e
iðoj tþ�j Þ

" #
, (21)

where xrðojÞ; the coefficients of the generalised first-order wave exciting forces, can
be expressed as

xrðojÞ ¼ r
ZZ

S̄

n
*
	u
*0

r ðiojÞ½jI ðojÞ þ jDðojÞdS. (22)

By substitution of Eq. (20) into Eq. (12) the first-order radiation forces are
obtained:

Dð1Þ
r ðtÞ ¼ Re

Xm

k¼1

XN

j¼1

zj½o
2
j ArkðojÞ � iojBrkðojÞpkðojÞ e

iðoj tþ�j Þ

( )
, (23)

where ArkðojÞ and BrkðojÞ are coefficients of added mass and added damping defined
as

ArkðoÞ ¼
1

o2
Re

ir
RR

S̄
n
*
	u
*0

rojkðoÞdS
n o

:

BrkðoÞ ¼
i

o
Im

(24)

For a linear structure, the displacement of the structure can be expressed as

~uðtÞ ¼ ðuðtÞ; vðtÞ;wðtÞÞ ¼
Xm

r¼1

u
*0

r prðtÞ. (25)

By substitution of Eqs. (19) and (25) into Eq. (13) the generalised first-order
restoring forces are obtained

Rð1Þ
r ðtÞ ¼ Re

Xm

k¼1

Crk

XN

j¼1

zjpkðoÞ e
iðoj tþ�j Þ

" #
, (26)
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where Crk denotes the frequency independent coefficients of the generalised first-
order forces expressed as

Crk ¼ r
ZZ

S̄

n
*
	u
*0

r gw0k dS, (27)

where w0k is the kth vertical dry mode of the structure.
3. Equations of motion and solution methods

Based on the formulation of the generalised fluid forces acting on a three-
dimensional flexible floating body, the equations of motion for solving the principal
coordinates psðtÞ may be represented as [9]Xm

s¼1

½ðars þ ArsÞ €psðtÞ þ ðbrs þ BrsÞ _psðtÞ þ ðcrs þ CrsÞpsðtÞ

¼ Eð1Þ
r ðtÞ þ Zð0Þ

r þ Qr; r ¼ 1; 2; . . . ;m, ð28Þ

where ars; brs and crs are the elements of the generalised mass matrix, the generalised
damping matrix and the generalised stiffness matrix of the structure, respectively.
These elements can together with the modes u

*0

r be obtained by a structural analysis
program. Finally, Qr denotes the generalised gravity forces.
According to the nonlinear von Karman plate equations (see e.g., [10]) and by

omitting the gravity and static buoyancy forces, the hydroelastic equations for a
uniform floating plate with large deflections can be writtenXmv

s¼1

½ðars þ ArsÞ €psðtÞ þ ðbrs þ BrsÞ _psðtÞ þ ðcrs þ CrsÞpsðtÞ

¼ Eð1Þ
r ðtÞ þ H ðsÞ

r ðtÞ; r ¼ 1; 2; . . . ;mv, ð29Þ

where mv is the total number of vertical displacement modes of the floating plate.
The extra term H ðsÞ

r ðtÞ on the right-hand side of Eq. (29) compared to Eq. (28)
denotes the generalised nonlinear forces induced by the membrane forces in the plate
[5] and will be discussed in the next section. Obviously, this term is a function of the
principal coordinates psðtÞ:
By including only the leading nonlinear term, Eq. (29) can be solved in the

frequency domain. The solution of Eq. (29) can be expressed as

psðtÞ ¼
XN

j¼1

½zjp
ð1Þ
s ðojÞ e

iðoj tþ�j Þ

þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

½zizjzkpðsÞ
s ðoþþ

ijk Þ e
iðoþþ

ijk
tþ�þþ

ijk
Þ
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þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

½zizjzkpðsÞ
s ðoþ�

ijk Þ e
iðoþ�

ijk
tþ�þ�

ijk
Þ


þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

½zizjzkpðsÞ
s ðo�þ

ijk Þ e
iðo�þ

ijk
tþ��þ

ijk
Þ


þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

½zizjzkpðsÞ
s ðo��

ijk Þ e
iðo��

ijk
tþ���

ijk
Þ
, ð30Þ

where

oþþ
ijk ¼ oi þ oj þ ok;

oþ�
ijk ¼ oi þ oj � ok;

o�þ
ijk ¼ oi � oj þ ok;

o��
ijk ¼ oi � oj � ok;

8>>>>><>>>>>:
and

�þþ
ijk ¼ �i þ �j þ �k;

�þ�
ijk ¼ �i þ �j � �k;

��þ
ijk ¼ �i � �j þ �k;

���
ijk ¼ �i � �j � �k:

8>>>>><>>>>>:
(31)

Furthermore, pð1Þ
s ðojÞ denotes the first-order principal coordinates induced by the

generalised first-order wave exciting forces. Only linear wave exciting forces are
considered and thus second and high order exciting forces are neglected.
The second to fifth terms on the right-hand side of Eq. (30) are nonlinear

contributions from the membrane forces. This will be discussed in the next section.
4. Generalised nonlinear force and contribution from the membrane forces

The nonlinear force vector induced by the large deflections dealt with in the von
Karman plate theory is defined as (see e.g., [10])

HðtÞ ¼
q2F ðtÞ

qy2
q2wðtÞ
qx2

þ
q2F ðtÞ

qx2
q2wðtÞ
qy2

� 2
q2F ðtÞ

qxqy

q2wðtÞ
qxqy

, (32)

where wðtÞ is the vertical displacement of the plate, it can be the linear, the nonlinear
or the combined one. F ðtÞ is the Airy stress function for the membrane stresses in the
plate, satisfying

Jx

q4F ðtÞ

qx4
þ 2Jxy

q4F ðtÞ

qx2qy2
þ Jy

q4F ðtÞ

qy4
¼

q2wðtÞ
qxqy

� �2
�

q2wðtÞ
qx2

q2wðtÞ
qy2

, (33)

with the boundary conditions

q2F ðtÞ

qxqy
¼ 0;

q2F ðtÞ

qy2
¼ 0; at x ¼ �

L

2
,

q2F ðtÞ

qxqy
¼ 0;

q2F ðtÞ

qx2
¼ 0; at y ¼ �

B

2
. (34)
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Here, B and L are the width and the length of the floating plate. The constants
Jx; Jxy; and Jy in Eq. (33) are the membrane flexibilities of the orthotropic plate.
They are given as follows:

Jx ¼
1

Eyh� ; Jy ¼
1

Exh� ; 2Jxy ¼
1

Gxyh� � nxJy � nyJx. (35)

Here, h� is the equivalent plate thickness, Ex and Ey are the equivalent Young’s
moduli of the material, Gxy is the equivalent shear modulus, and vx; vy are Poisson
ratio coefficients.
The first-order complex displacements wð1ÞðtÞ can be calculated by

wð1ÞðtÞ ¼
XN

j¼1

½zjwðojÞ e
i½oj tþ�j , (36)

where wðojÞ is the complex amplitude of the displacement induced by the jth regular
wave, determined by the first-order principal coordinate pð1Þ

s ðojÞ and the dry modes
w0s of the plate

wðojÞ ¼
Xmv

s¼1

½w0s pð1Þ
s ðojÞ. (37)

The dry modes w0s can be calculated by any linear structural analysis code or, in the
present case of a uniform plate, by analytical use of the orthotropic plate stiffnesses
D11; D12 and D22:
Obviously, wð1ÞðtÞ shown in Eq. (36) is represented in complex form, and its

conjugation can be expressed as

wð1ÞðtÞ ¼
XN

j¼1

½zjwðojÞ e
�i½oj tþ�j . (38)

Here and hereafter an over bar on a complex function or quantity represents its
conjugation.
For simplification, the following relationship is introduced

ReðX Þ 	ReðY Þ ¼ 1
2
½ReðX 	 Y Þ þReðX 	 Ȳ Þ, (39)

where X and Y are two arbitrary chosen complex functions or quantities.
By use of Eq. (39), substitution of Eqs. (36) and (38) into the right-hand side of

Eq. (33) yields

Jx
q4F ðtÞ

qx4
þ 2Jxy

q4F ðtÞ

qx2qy2
þ Jy

q4F ðtÞ

qy4

¼
1

2
Re

XN

i¼1

XN

j¼1

zizj

q2wðoiÞ

qxqy

q2wðojÞ

qxqy
�

q2wðoiÞ

qx2
q2wðojÞ

qy2

" #
e
iðoþ

ij
tþ�þ

ij
Þ

*(

þ
q2wðoiÞ

qxqy

q2wðojÞ

qxqy
�

q2wðoiÞ

qx2
q2wðojÞ

qy2

" #
e
iðo�

ij
tþ��

ij
Þ

+)
, ð40Þ
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where

o�
ij ¼ oi � oj ; ��ij ¼ �i � �j . (41)

Eq. (40) can be solved by means of the boundary condition (34) by using the finite
difference method [11]. The solution of Eq. (40) can be written as

F ðtÞ ¼
1

2
Re

XN

i¼1

XN

j¼1

zizj ½F
þðoi;ojÞ e

iðoþ
ij

tþ�þ
ij
Þ
þ F�ðoi;ojÞ e

iðo�
ij

tþ��
ij
Þ


( )
. (42)

By use of Eq. (39), substitution of the Eqs. (36), (38) and (42) into (32) yields

HðtÞ ¼
1

4
Re

XN

i¼1

XN

j¼1

XN

k¼1

zizjzk½H
þþðoi;oj ;okÞ e

iðoþþ
ijk

tþ�þþ
ijk

Þ

(

þ Hþ�ðoi;oj ;okÞ e
iðoþ�

ijk
tþ�þ�

ijk
Þ
þ H�þðoi;oj ;okÞ e

iðo�þ
ijk

tþ��þ
ijk

Þ

þH��ðoi;oj ;okÞ e
iðo��

ijk
tþ���

ijk
Þ


)
, ð43Þ

where

Hþþðoi;oj ;okÞ ¼
q2Fþðoi;ojÞ

qy2
q2wðokÞ

qx2
þ

q2Fþðoi;ojÞ

qx2
q2wðokÞ

qy2

� 2
q2Fþðoi;ojÞ

qxqy

q2wðokÞ

qxqy
,

Hþ�ðoi;oj ;okÞ ¼
q2Fþðoi;ojÞ

qy2
q2wðokÞ

qx2
þ

q2Fþðoi;ojÞ

qx2
q2wðokÞ

qy2

� 2
q2Fþðoi;ojÞ

qxqy

q2wðokÞ

qxqy
,

H�þðoi;oj ;okÞ ¼
q2F�ðoi;ojÞ

qy2
q2wðokÞ

qx2
þ

q2F�ðoi;ojÞ

qx2
q2wðokÞ

qy2

� 2
q2F�ðoi;ojÞ

qxqy

q2wðokÞ

qxqy
,

H��ðoi;oj ;okÞ ¼
q2F�ðoi;ojÞ

qy2
q2wðokÞ

qx2
þ

q2F�ðoi;ojÞ

qx2
q2wðokÞ

qy2

� 2
q2F�ðoi;ojÞ

qxqy

q2wðokÞ

qxqy
. ð44Þ



ARTICLE IN PRESS

X.-j. Chen et al. / Marine Structures 17 (2004) 435–454444
The generalised nonlinear forces can hence be expressed as

HrðtÞ ¼
1

4
Re

XN

i¼1

XN

j¼1

XN

k¼1

zizjzk½H
þþ
r ðoi;oj ;okÞ e

iðoþþ
ijk

tþ�þþ
ijk

Þ

(

þ Hþ�
r ðoi;oj ;okÞ e

iðoþ�
ijk

tþ�þ�
ijk

Þ
þ H�þ

r ðoi;oj ;okÞ e
iðo�þ

ijk
tþ��þ

ijk
Þ

þH��
r ðoi;oj ;okÞ e

iðo��
ijk

tþ���
ijk

Þ


)
, ð45Þ

where

H�
r ðoi;oj ;okÞ ¼

XNp

n¼1

wðnÞ
r H�ðnÞðoi;oj ;okÞ, (46)

and where wðnÞ
r and H�ðnÞ are the rth vertical mode and the nonlinear forces acting on

node n. Np is the total number of nodes included for the plate. H�
r and H�ðnÞ denotes

Hþþ
r ; Hþ�

r ; H�þ
r or H��

r and HþþðnÞ; Hþ�ðnÞ; H�þðnÞ or H��ðnÞ; respectively.
With the generalised nonlinear forces induced by the membrane forces given by

Eq. (32), the following equation is solved to obtain the third-order principal
coordinates pðsÞ

s ðo�
ijkÞ:Xmv

s¼1

½�ðo�
ijkÞ

2
ðars þ ArsÞ þ ðio�

ijkÞðbrs þ BrsÞ þ ðcrs þ CrsÞp
ðsÞ
s ðo�

ijkÞ

¼ H�
r ðoi;oj ;okÞ; ðr ¼ 1; 2; . . . ;mvÞ ði; j; k ¼ 1; . . . ;NÞ. ð47Þ

Here and hereafter superscript o�
ijk denotes o

þþ
ijk ; oþ�

ijk ; o�þ
ijk or o��

ijk : The first-order
hydrodynamic coefficients Ars and Brs are calculated by use of Eq. (24) at the
corresponding frequencies jo�

ijkj: Thus pðsÞ
s ðo�

ijkÞ are nonlinear functions of the linear
principal coordinates pð1Þ

s ðojÞ: It should be noted that when o�
ijk ¼ 0; Eq. (47)

becomesXmv

s¼1

ðcrs þ CrsÞp
ðsÞ
s ðo�

ijkÞ ¼ H�
r ðoi;oj ;okÞ; ðr ¼ 1; 2; . . . ;mvÞ ði; j; k ¼ 1; . . . ;NÞ.

(48)

With the expression of the total principal coordinates shown in Eq. (30), the total
displacements can be calculated by

wðtÞ ¼ Re
Xmv

s¼1

½w0s psðtÞ

( )
¼ Re

XN

j¼1

zj e
iðoj tþ�j Þ

Xmv

s¼1

½w0s pð1Þ
s ðojÞ

( )"

þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

zizjzk e
iðoþþ

ijk
tþ�þþ

ijk
Þ
Xmv

s¼1

½w0s pðsÞ
s ðoþþ

ijk Þ

( )

þ
1

4

XN

i¼1

XN

j¼1

XN

k¼1

zizjzk e
iðoþ�

ijk
tþ�þ�

ijk
Þ
Xmv

s¼1

½w0s pðsÞ
s ðoþ�

ijk Þ

( )
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þ
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XN

j¼1
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k¼1

zizjzk e
iðo�þ

ijk
tþ��þ

ijk
Þ
Xmv

s¼1

½w0s pðsÞ
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þ
1
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XN

i¼1

XN

j¼1

XN

k¼1

zizjzk e
iðo��

ijk
tþ���

ijk
Þ
Xmv

s¼1

½w0s pðsÞ
s ðo��

ijk Þ

( )#
. ð49Þ

With the displacements, all the other parameters related to the fluid and the structure
can be calculated. For example, the bending moments in the plate become

Mx ¼ �D11
q2wðtÞ
qx2

þ ny

q2wðtÞ
qy2

� �
,

My ¼ �D22
q2wðtÞ
qy2

þ nx

q2wðtÞ
qx2

� �
,

Mxy ¼ �2D12
q2wðtÞ
qxqy

� �
. (50)

Here, D11; D12 and D22 are the orthotropic plate stiffnesses.
5. Numerical solution

5.1. Particulars of the incident waves and the floating plate

For simplicity, two identical irregular wave systems are coming from different
directions and assumed to act on a very large floating plate. The wave energy
spectrum of each system is shown in Fig. 1. Each of the irregular waves is
approximated by 17 regular waves as indicated in Fig. 1. The peak frequency of the
irregular wave is 1.12 rad/s. The significant wave height of each irregular wave is 2m.
The particulars of the VLFS mentioned by Sim and Choi [12] are chosen as an

example. The relevant data is shown in Table 1. The VLFS is a scaled model of the
Mega-Float constructed and developed in Yokosuka [13] and to be used close to
land in sheltered waters. In Sim and Choi [12] the bending rigidity is given to be
EI ¼ 4:77� 1011 Nm2: If an isotropic plate of the thickness h ¼ 2:0m is assumed,
this bending rigidity corresponds to an equivalent Young’s modulus E ¼ 1:19�
1010 N=m2: As no information on the structural layout of this VLFS is given in the
open literature, the structure is assumed to be made of steel and composed of a set of
crossing webs spaced both longitudinally and transversely by 3m. The equivalent
thickness of the webs is taken to be 12.9mm whereas the equivalent thickness of the
bottom and top plates is taken to be 17.5mm. The mass of local stiffening and
nonstructural items is accounted for by increasing the mass of the steel structure by
25 per cent and hence the draught of the VLFS becomes 0.5m. The resulting
membrane stiffness Eh� corresponds to an equivalent plate thickness of approxi-
mately 0.766m. It should be stressed that shear deformations are neglected even if
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Fig. 1. Wave energy spectrum of the irregular waves.

Table 1

Particulars of the plate

Length L 300.0m

Width B 60.0m

Depth h 2.0m

Equivalent plate thickness h� 0.766m

Draught d 0.5m

Young’s modulus E 1:19� 1010 N=m2

Poisson’s ratio v 0.13

Mass density rb 256:25 kg=m3
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they might be just as important as the membrane effects for the present structure. A
total number of modes m ¼ 22 (3 rigid ones and 19 elastic ones) is applied.

5.2. Analysis of the nonlinear coordinates

Figs. 2–5 show selected nonlinear principal coordinates pðsÞ
s ðo�

ijkÞ of the first four
vertical bending moment modes. Resonant vibrations are seen in them, e.g. Fig. 2
(first-order), Fig. 3 (second-order), Fig. 4 (third-order) and Fig. 5 (fourth-order). The
differences in vertical scales should be noted. The figures show for example that the
maximum principal of the fourth-order resonant vibrations (0.0000014) is far smaller
than that of the first-order resonant vibrations (0.012). A total number of 22 modes
is found suitable for the numerical example. The wave angles are b1 ¼ 45� and
b2 ¼ �45�; respectively. The horizontal axes are integer numbers where each number
denotes a certain combination of oi; oj and ok satisfying oi � oj � ok ¼ constant:
This is the reason for the repetitive pattern visible in the figures as it just corresponds
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Fig. 2. First-order resonant vibration of vertical bending moment o�
ijk ¼ 3:12 rad=s:
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Fig. 3. Second-order resonant vibration of vertical bending moment o�
ijk ¼ 3:32 rad=s:
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Fig. 4. Third-order resonant vibration of vertical bending moment o�
ijk ¼ 5:24 rad=s:
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Fig. 5. Fourth-order resonant vibration of vertical bending moment o�
ijk ¼ 7:56 rad=s:
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Table 2

Resonant vibration frequencies

r Arrðoþ
ijkÞ=10

6 arr=10
6 crr=10

6 Crr=10
6 osr�6

=rad=s owr=rad=s

7 2.575 2.302 2.211 45.050 0.980 3.113

8 3.274 2.290 16.753 44.578 2.705 3.320

10 1.643 2.266 63.867 43.793 5.309 5.248

12 1.577 2.232 172.239 42.676 8.785 7.512

X.-j. Chen et al. / Marine Structures 17 (2004) 435–454448
to interchange of the indices i, j and k. The lines drawn between the points are only
used to make the figures more readable.
The elastic resonant vibration frequencies owr in water are calculated by Eq. (51)

below [9] and the results of the first four vertical bending moment modes are shown
in Table 2, where osr�6

denotes the natural frequencies of the elastic responses in air.
Arrðoþ

ijkÞ are diagonal elements of the non-diagonal generalised added mass matrix
(in SI units).

�o2wr
½arr þ Arrðoþ

ijkÞ þ ðcrr þ CrrÞ ¼ 0. (51)
5.3. Extreme value predictions of bending moments

As the phase angle components �j and ��ijk in Eq. (30) are random variables, the
principal coordinates, the vertical displacements and the bending moments are all
random variables. Because a stationary sea state is considered, extreme value
predication can be performed on the basis of the theory of stationary stochastic
processes.
For a stationary stochastic process, we may set t ¼ 0 in Eq. (49) which yields

w ¼
X2N

j¼1

ljxj þ
X2N

i¼1

X2N

j¼1

X2N

k¼1

Lijkxixjxk, (52)

where

lj ¼

Re
Pmv

s¼1

w0s pð1Þ
s ðojÞ

� �
; xj ¼

zj cos �j

zj sin �j

(
when

jpN

j4N

(
;

�Im
Pmv

s¼1

w0s pð1Þ
s ðoj�NÞ

� �

8>>>>>>>>><>>>>>>>>>:
(53)
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Lijk ¼

1

4
Re

Xmv

s¼1

w0s ½p
ðsÞ
s ðoþþ

i0j0k0
Þ þ pðsÞ

s ðoþ�

i0j0k0
Þ þ pðsÞ

s ðo�þ

i0j0k0
Þ þ pðsÞ

s ðo��
i0j0k0 Þ

( )
;

when i; j; kpN;

�
1

4
Re

Xmv

s¼1

w0s ½p
ðsÞ
s ðoþþ

i0j0k0
Þ þ pðsÞ

s ðoþ�

i0j0k0
Þ þ pðsÞ

s ðo�þ

i0j0k0
Þ þ pðsÞ

s ðo��
i0j0k0 Þ

( )
;

only one of i; j; kpN;

�
1

4
Im

Xmv

s¼1

w0s ½p
ðsÞ
s ðoþþ

i0j0k0
Þ þ pðsÞ

s ðoþ�

i0j0k0
Þ þ pðsÞ

s ðo�þ

i0j0k0
Þ þ pðsÞ

s ðo��
i0j0k0 Þ

( )
;

only one of i; j; k4N;

1

4
Im

Xmv

s¼1

w0s ½p
ðsÞ
s ðoþþ

i0j0k0
Þ þ pðsÞ

s ðoþ�

i0j0k0
Þ þ pðsÞ

s ðo�þ

i0j0k0
Þ þ pðsÞ

s ðo��
i0j0k0 Þ

( )
;

when i; j; k4N;

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
(54)

where

i0 ¼
i

i � N

(
;

ipN

i4N

(
; j0 ¼

j

j � N

(
;

jpN

j4N

(
,

k0
¼

k

k � N

(
;

kpN

k4N

(
. ð55Þ

Substitution of Eq. (52) into (50) yields

Mx ¼
X2N

j¼1

ajxj þ
X2N

i¼1

X2N

j¼1

X2N

k¼1

bijkxixjxk, (56)

where

aj ¼ �D11
q2lj

qx2
þ ny

q2lj

qy2

 !
, (57)

bijk ¼ �D11
q2Lijk

qx2
þ ny

q2Lijk

qy2

 !
. (58)

The bending moments My and Mxy have expressions similar to Eq. (56).
The central moments Z1 ¼ E½Mx and Zn ¼ EbðMx � Z1Þ

n
c of the bending moment

distribution can be expressed as [14]:

Z1 ¼ 0,
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Z2 ¼
X2N

i¼1

aiaiV i þ
X2N

i¼1

X2N

j¼1

X2N

k¼1

ð9bijjbikk þ 6bijkbijkÞViV jVk

þ 6
X2N

i¼1

X2N

j¼1

aibijjV iVj,

Z3 ¼ 0,

Z4 ¼ 3Z22 þ 24
X2N

i¼1

X2N

j¼1

X2N

k¼1

aiajakbijkViV jVk, (59)

where

Vi ¼ E½xixi ¼ SðoiÞDoi (60)

is the variance of xi [15]. The statistics of the bending moments can be calculated by
use of a Gram–Charlier expansion [14]. However, a simple cubic approximation eMx

for MxeMx ¼ c1U þ c3U
3, (61)

where c1 and c3 are determined so that

E½ eM2

x ¼ E½M2
x ¼ Z2,

E½ eM4

x ¼ E½M4
x ¼ Z4, (62)

taking U to be a standard normal distribution variable is usually preferred. The
reason is that the Gram–Charlier series often yields negative probability densities in
the tail of the distribution. As the wave process is rather narrow-banded the peak
values of U can be assumed to follow a Rayleigh distribution, and thus the most
probable largest peak of U among Nz peaks becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln Nz

p
:

For the nonlinear distribution of Mx considered in the present paper, the most
probable largest bending moment during a finite time t ¼ NzTz then becomes

Me
x ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln Nz

p
þ c3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln Nz

p
Þ
3, (63)

where Tz is the zero-upcrossing period. The coefficients c1 and c3 in Eq. (63) can be
determined from the following nonlinear equations [16]:

Z2 ¼ c21 þ 6c1c3 þ 15c23,

Z4 ¼ 3c41 þ 10395c43 þ 630c21c
2
3 þ 3780c1c

3
3 þ 60c31c3. (64)

Based on the theory shown in Eqs. (51)–(64), the predicted most probable extreme
values of bending moments at 11 selected points for an operational period of 1–20
years (the grid of the plate and the coordinates of the points are shown in Fig. 6 and
Table 3) are calculated and some results are given in Figs. 7–12. The wave angles are
b1 ¼ 45�; b2 ¼ �45� and b1 ¼ 45�; b2 ¼ 135�; respectively.
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Table 3

Coordinates of the selected points

1 2 3 4 5 6 7 8 9 10 11

(35,45) (115,45) (185,45) (265,45) (75,30) (150,30) (225,30) (35,15) (115,15) (185,15) (265,15)

(0,0)

1 2 3 4

5 6 7

8 9 10 11

60

300

Fig. 6. Grid of the plate.
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Fig. 7. Predicted extreme value of bending moment Me
xy of point 1: (a) b1 ¼ 45�; b2 ¼ �45�; (b) b1 ¼

45�; b2 ¼ 135�:
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From the figures and the numerical results it is seen that
(a)
 The membrane forces have a small, but different influence on the bending
moments of different points.
(b)
 Wave angles have an influence on the predicted extreme values. For b1 ¼
45�; b2 ¼ 135�; the maximum nonlinear effects on the extreme bending moments
Me

x;M
e
y and Me

xy for a period of 20 years are �0:02%; �1:9% and �2:4%;
respectively. For b1 ¼ 45�; b2 ¼ �45�; the maximum effects on the extreme
bending moments Me

x;M
e
y and Me

xy for a period of 20 years are 0:02%; �2:0%
and �3:09%; respectively.
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Fig. 8. Predicted extreme value of bending moment Me
xy of point 4 ðb1 ¼ 45�; b2 ¼ �45�Þ:

0 5 10 15 20 0 5 10 15 20

-300000

-350000

-250000

-200000

-150000

-100000

-50000
0

M
e xy

[N
m

/m
]

-300000
-350000
-400000

-250000
-200000
-150000
-100000

-50000
0

M
e xy

[N
m

/m
]

t [years]t [years]

 linear
 nonlinear
 combined

 linear
 nonlinear
 combined

(b)(a) �1 = 45°, �2 = -45° �1 = 45°, �2 = 135°

Fig. 9. Predicted extreme value of bending moment Me
xy of point 5: (a) b1 ¼ 45�; b2 ¼ �45�; (b) b1 ¼

45�; b2 ¼ 135�:
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6. Conclusions

The objective of the paper has been to investigate the membrane effect in VLFS of
the pontoon type subjected to stochastic wave loads. In the analysis linear incident
waves are assumed and the nonlinearities in the response are solely due to the
coupling between axial forces and bending moments. This coupling is modeled by
the von Karman plate equations.
The numerical solution is found in the frequency domain taking only the lowest

order of nonlinearity into account. The nonlinear responses involve sum and
differences combinations of three wave components. These components are
determined numerically using the concept of principal modes which allows a quick
identification of the resonance modes. The nonlinear response is symmetric with a
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Fig. 10. Predicted extreme value of bending moment Me
xy of point 6: (a) b1 ¼ 45�; b2 ¼ �45�; (b) b1 ¼

45�; b2 ¼ 135�:
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Fig. 11. Predicted extreme value of bending moment Me
xy of point 7 ðb1 ¼ 45�; b2 ¼ �45�Þ:
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kurtosis different from a Gaussian distribution. Extreme values of the response are
determined by a Hermite transformation involving the variance and the kurtosis of
the response.
From the numerical example it is found that for a typical VLFS pontoon

configuration the membrane effects are very modest, decreasing the extreme bending
moment by a few percent. The conclusion is slightly different from Chen et al.,
considering regular waves [5].
The wave loads are treated by a linear procedure and further studies should be

performed to assess the importance of nonlinear wave load components. Also shear
deformations ought to be considered in future work.
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